An Efficient Strategy Single-Electron-Transfer-Induced Tandem Anion-Radical Reactions Frantis ek Kafka, Martin Holan, Denisa Hidasovu, Radek Pohl, Ivana Císar ova, Blanka Klepetµr ovµ, and Ullrich Jahn* Angew. Chem. Int. Ed. 2014, 53, 9944 –9948 DOI: 10.1002/anie.201403776 Yongzhao Yan Wipf Group Current Literature 9-5-2014 # SET-Mediated Transformation - * Radicals are generated from neutral precursors. - * Overall reactions are classified as neutral, oxidative and reductive. - * Stoichiometric amounts of SET agents. 1. Top. Curr. Chem. 2012, 320, 121-452 #### * Reductive Titanium(III)-catalyzed reaction 8 equiv. Mn, 4 equiv. TMSCI, 7 equiv. 2,4,6-collidine,THF, 0°C 2Cp₂TiCl₂ (20 mol %) 56-99% $R^1 = Alkyl$ MnCl₂ aryl, vinyl [Cp2TiCl]2 R²= H, alkyl **OTMS** OTiCICp₂ Ti promotes 2 SET 1. Top. Curr. Chem. 2012, 320, 121-452 #### * Reductive Titanium(III)-catalyzed reaction john maciejsiki indoline scaffold synthesis 3mol% 1. Org. Lett., 2008, 10 (19), pp 4383-4386 * Reductive Titanium(III)-catalyzed reaction trace 02 or H+ oxidize back 1. Org. Lett., 2008, 10 (19), pp 4383-4386 #### * Ru(II) catalyzed photoredox reactions 1. Top. Curr. Chem. 2012, 320, 121-452 # Ferrocene/Ferrocenium Couple Table 2. Formal Potentials (V vs Fc) of Selected Oxidizing Agents | oxidant | solvent | $E^{\circ\prime}$ | correction | ref | |---|---------------------------------|-------------------|------------|------------------| | $[N(C_6H_2Br_3-2,4,6)_3]^+$ | MeCN | 1.36 | a | 228 | | Ce(IV) | HClO ₄ | 1.30 | ь | c | | | H_2O | 0.88 | ь | C | | $[N(C_6H_3Br_2-2,4)_3]^+$ | MeCN | 1.14 | a | 228 | | [WCl ₆] | CH_2Cl_2 | ca. 1.1 | d | 132 | | [NO] ⁺ | CH_2Cl_2 | 1.00 | none | 195 | | [Ru(phen) ₃] ³⁺ | MeCN | 0.87 | c | 108 | | [NO] ⁺ | MeCN | 0.87 | none | 195 | | [thianthrene]+ | MeCN | 0.86 | f | g | | $[N(C_6H_4Br-4)_3]^+$ | CH_2Cl_2 | 0.70 | d | h | | | MeCN | 0.67 | i | j | | [Fe(bipy) ₃] ³⁺ | MeCN | 0.66 | e | 111 | | Ag ⁺ | CH_2Cl_2 | 0.65 | d | 63 | | [Mo(tfd) ₃] | MeCN | 0.55 | f | \boldsymbol{k} | | [IrCl ₄ (PMe ₂ Ph) ₂] | MeCN | ca. 0.5 | 1 | 123 | | $[Fe(\eta-C_5H_4COMe)_2]^+$ | CH_2Cl_2 | 0.49 | none | h | | [CuTf ₂] | MeCN | 0.40 | f | 88 | | Ag ⁺ | THF | 0.41 | m | 63 | | [Ni(tfd) ₂] | CH_2Cl_2 | 0.33 | none | h | | [PtCl ₆] ²⁻ | H_2O | 0.31 | b | n | | [Fe(η-C ₅ H ₄ COMe)Cp] ⁺ | CH_2Cl_2 | 0.27 | none | h | | Ag ⁺ | acetone | 0.18 | 0 | 63 | | Cl ₂ | MeCN | 0.18 | ь | p | | DDQ | MeCN | 0.13 | i | 308 | | Br ₂ | MeCN | 0.07 | b | p | | $[N_2C_6H_4NO_2-4]^+$ | sulfolane | ca. 0.05 | f | q | | Ag ⁺ | MeCN | 0.04 | f | 63 | | $[C_3\{C(CN)_2\}_3]^-$ | MeCN | 0.03 - 0.06 | r | 304 | | [FeCp ₂] ⁺ | | 0.0 | | | | [N ₂ C ₆ H ₄ F-4] ⁺ | MeCN | -0.07 | f | q | | [CPh ₃] ⁺ | MeCN | -0.11 | f | s | | I_2 | MeCN | -0.14 | f | t | | TCNE | MeCN | -0.27 | f | u | | TCNQ | MeCN | -0.30 | f | u | | [FeCp* ₂] ⁺ | MeCN | -0.59 | none | h | | [LOOP 2] | CH ₂ Cl ₂ | -0.48 | none | h | | $[C_7H_7]^+$ | MeCN | -0.65 | f | s | | | | | | | Table 3. Formal Potentials (V vs Fc) of Selected Reducing Agents | F
me | -3.10 | a | 2666 | |------------------|---|--|---| | | 0.00 | | 366b | | | -3.05 | a | 366b | | F | -2.95 | ь | c | | F, glyme | -3.04 | a | d | | 3 | -2.64 | e | f | |) | -2.60 | e | f | | 3 | -2.38 | e | f | | aqueous | -2.36 | e | h | | me | -2.47 | i | j | | f | -2.30 | ь | 437 | | 3 | -2.25 | e | f | | F | -2.30 | none | \boldsymbol{k} | | F | -2.17 | ь | 1 | | F | -2.26 | a | 366b | | me | -2.17 | i | i | | me | -2.09 | m | 402 | | 2Cl ₂ | -1.94 | n | 0 | | CN | -1.91 | p | q | | F, MeCN | ca1.8 | p, r | 448,
449 | | ·Cl- | | none | k | | | | | 404a | | | | | 8 | | | | | | | | | | $\frac{q}{s}$ | | | | | 357 | | | | • | 551 | | CN | ca. 0.47 | u | 393 | | | IF
F, glyme
3
O
Salaqueous
me
f
6
F
F
F
me
me
2Cl ₂
CN
F, MeCN
2Cl ₂
me
2Cl ₂
CN
F, MeCN | F, glyme -3.04 (a) -2.64 (b) -2.60 (c) -2.38 (a) -2.36 (a) -2.36 (a) -2.37 (a) -2.30 (a) -2.25 (a) -2.30 (a) -2.25 (a) -2.30 (a) -2.25 (a) -2.30 (a) -2.25 (a) -2.30 (b) -2.17 (c) -2.30 (c) -2.30 (d) -2.25 (d) -2.30 | F, glyme -3.04 a 3 -2.64 e -2.60 e 3 -2.38 e 4 aqueous -2.36 e 4 -2.47 i 5 -2.25 e 6 -2.30 none 6 -2.17 b 6 -2.17 b 7 F -2.26 a 7 me -2.17 i 8 me -2.17 i 9 me -2.17 i 9 me -2.17 i 9 me -2.18 p 10 me -1.91 p 10 F, MeCN ca1.8 p, r 11 (irr) 12 Cl ₂ -1.33 none 13 me -1.31 m 14 cl ₂ -1.15 none 15 cl ₂ -0.59 n 15 cl ₂ -0.59 n 15 cl ₂ -0.44 p 15 cl ₂ -0.41 cl ₂ -0.41 d 16 cl ₃ -2.64 e 17 cl ₄ -2.70 b 18 cl ₄ -2.30 none 18 cl ₄ -1.31 m c | mild Oxidant weak reductant recommended by IUPAC for standard 0.40 V in MeCN 1. Chem. Rev. 1996, 96, 877-910 ## Ferrocene/TEMPO Combination $$\begin{array}{c|c} RN & R^{1} \\ R^{1} & R^{2} \\ + & O \\ R^{3} & OR^{4} \end{array}$$ $$\begin{array}{c|c} R^{1} & R^{2} & CO_{2}R^{4} & Fe \oplus 3 \\ \hline & N & R^{3} \end{array}$$ crappy yield in one-pot highest yield = 65% both 3 and 4 are used with 1 equiv. ### Ferrocene/TEMPO Combination Radical recombination faster than radical addition to alkene without FeCp2 # Applications in Total Synthesis - * Total Synthesis of 15-F_{2t}-Isoprostane - * 39% desired isomer # Trapping Reagents * CuCl₂ and CuBr₂ as oxidizing/trapping reagent CuBr2 gave pdt with low stereoselectivity ## Ferrocene/TEMPO Redox Pair | NH T | BuLi, 3,
HF, -78 °C,
at. 1, 2 ⁺ P Aa Ph tBu 4b Ph Me R ⁴ R ⁷ R ⁸ Ph N R ⁴ R ⁴ R ⁷ Ph R ⁴ R ⁴ R ⁵ Ph R ⁴ R ⁴ R ⁵ R ⁵ R ⁵ R ⁵ R ⁷ R ⁷ R ⁷ R ⁸ | R^2 R^2 | |------------|---|--| | ∞ ntry 3 4 | 1 [mol %] 5+6, yield [| %] d.r. Other products,
5:6 yield [%] | | 3a 4a | 10 5a+6a, 75 | 6:1 7a, 16 | | 3a 4a | 1 $5a+6a, 71$ | 5:1 7a , 16 | | 3a 4b | 1 5b+6b , 71 | 3.8:1 $7b+8b$, [b] < 5 | | 3b 4a | 5 $5c+6c, 72^{[c]}$ | | | 3 3a 4c | 2 5d+6d, 49 | | | 6 3a 4c | 5 5d+6d, 56 | - | | 7 3b 4c | 5e+6e, 56 | 2.3:1 8e , 19 | | 8 3c 4c | 5 5 f + 6 f , 25 | 3.3:1 8 f , 33 | Yongzhao Yan @ Wipf Group all 2 3 trans 34 cis Ferrocene 1-10% Page 13 of 19 # Tandem Michael Addition/Radical Cyclization/Oxygenation Reactions # Tandem Michael Addition/Radical Cyclization/Oxygenation Reactions 5 exo to 6 endo #### Ferrocene/TEMPO Redox Pair * Comparing with 52% and 47% (6:1)¹ # TMP As Alcohol Protecting Group Tolerance with reduction Zn cleavage mcpba directly oxidize it back 40 equiv. Zn, Method 1: AcOH:H₂O:THF 3:1:1 Method 2: AcOH:THF 3:1 Conditions A-E 40 equiv. Zn, Method 1: AcOH:H₂O:THF 3:1:1 $$R^1$$ R^2 R^3 $R^$ ### Conclusion - * High stereoselectivity on several examples. - * TEMPO as a alcohol protecting group saving a protection step/ excessive oxidant usage. - Potentials in total synthesis - * SET oxidation by Ferroceium and combination with TEMPO